Rhenium-doped MoS2 films
نویسندگان
چکیده
منابع مشابه
Spectroscopic determination of phonon lifetimes in rhenium-doped MoS2 nanoparticles.
We investigated the infrared vibrational properties of pristine and Re-substituted MoS2 nanoparticles and analyzed the extracted phonon lifetimes in terms of multiple scattering events. Our measurements reveal both size- and doping-dependent changes that we attribute to grain boundary scattering and charge and mass effects, respectively. By contrast, Born charge is affected only by size. These ...
متن کاملInteractions and superconductivity in heavily doped MoS2
We analyze the microscopic origin and the physical properties of the superconducting phase recently observed in MoS2. We show how the combination of the valley structure of the conduction band, the density dependence of the screening of the long-range Coulomb interactions, the short-range electronic repulsion, and the relative weakness of the electron-phonon interactions makes possible the exis...
متن کاملFerromagnetism in Transitional Metal-Doped MoS2 Monolayer.
Manipulating electronic and magnetic properties of two-dimensional (2D) transitional-metal dichalcogenides (TMDs) MX2 by doping has raised a lot of attention recently. By performing the first-principles calculations, we have investigated the structural, electronic, and magnetic properties of transitional metal (TM)-doped MoS2 at low and high impurity concentrations. Our calculation result indic...
متن کاملOxygen etching of thick MoS2 films.
Oxygen annealing of thick MoS2 films results in randomly oriented and controllable triangular etched shapes, forming pits with uniform etching angles. These etching morphologies differ across the sample based on the defect sites situated on the basal plane surface, forming numerous features in different bulk sample thicknesses.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2017
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4995220